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1.3 Curvatures

We first recall the fundamental properties of the curvature in differential
geometry. Let R = V? be the curvature of the Levi-Civita connection.
Recall that for U, V,W, X € TM,

R(U,V,W,X) =g(R(U,V)X,W). (1.3.1)
Then the curvature has the following properties:

e Skew-symmetric:

R(X,Y,Z,W) =—R(Y,X,Z,W) = R(Y,X,W, 2). (1.3.2)

e Symmetric:
RX,)Y,ZW)=R(Z W X,Y). (1.3.3)
e Bianchi’s first identity:

R(X,Y)Z + R(Z, X)Y + R(Y, Z)X = 0. (1.3.4)

e Bianchi’s second identity:

(V2R)(X, Y)W + (VyR)(Z, X)W + (VxR)(Y,Z)W = 0. (1.3.5)

The sectional curvature of (V, W) is defined by
R(V,W, VW)

sec(V, W) = GV AWV AT (1.3.6)
where
a9 2) g(X W)
g XANY, ZANW)=d t( o(Y.2) (v ) ) (1.3.7)

It only depends on the plane m = span{v, w}.

A Riemann manifold has constant curvature k if sec(7) = k for all
2-planes in T, M.

The Ricci curvature of (v, w) is defined by

Ric(V,W) =Y R(e;, V,e;, W). (1.3.8)
=1
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Thus Ric is a symmetric bilinear form. We adopt the language that Ric > k
if all eigenvalues of Ric are > k. That is, Ric(V,V) > kg(V, V) for all V.

If Ric(V,W) = kg(V,W) for all VW, then (M, g) is said to be an Ein-
stein manifold with Einstein constant k. If (M, g) has constant curvature
k, then (M, g) is also Einstein with Einstein constant (n — 1)k.

The scalar curvature is defined by

scal = tr(Ric) = 2 Z sec(e;, €;). (1.3.9)

1<J

Let (M,w) be a Kéhler manifold. Then the curvature is naturally ex-
tended as an endomorphism of 7'M ® C in a C-linear way.
By Theorem 1.2.13, we see that [R, J] = 0. So for U,V,W € TM & C,

R(U,V)JW = JR(U,V)W. (1.3.10)
By (1.1.7) and (1.3.1), we have
R(U,V,JW,JX) = R(U,V,W, X). (1.3.11)
So if (W, X) € TUOIM x TEONM or TOVM x TOVM, R(U,V,W, X) = 0.
Thus by (1.2.9), the curvatures are possibly non-vanishing only essentially
for

(U V, W, X) € TEIM x TOVM 5 TEO 0 5 7O . (1.3.12)

Definition 1.3.1. Let Ric be the Ricci tensor in Riemannian geometry. For
X, Y € TM ® C, we define the Ricci form Ric,, € Q%(M) by

Ric,,(X,Y) = Ric(JX,Y), (1.3.13)

Definition 1.3.2. Let M be a complex manifold with triple (g, J,w). The
metric g is called Kahler-Einstein if (M, w) is Kédhler and Einstein. In this
case, we call (M,w) a Ké&hler-Einstein manifold.

Proposition 1.3.3. If (M,w) is a Kdhler-Einstein manifold with Einstein
constant k then

Ric,, = kw. (1.3.14)

Proof. Our proposition follows directly from Definition 1.3.1 and (1.1.13).
]
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Let ey, -+ , es, be alocally orthonormal basis of T'M such that e,,.;, = Je;
fori =1,---,n. Let u; = %(ei —+v/—1Je;). Then uy,--- ,u, is a locally
orthonormal basis of T M. For oo € Q?(M), we could calculate that

(1.3.15)

]
,Si
i
=
i

o
B
S

Proposition 1.3.4. The Ricci form
Ric, = vV—1trT""M[R] = —/=10d(log det(h)) € Q" (M).  (1.3.16)
Proof. By Definition 1.3.1 and (1.3.15),

2n
1
Ricy(X,Y) = Ric(JX,Y) = o > (R(Jei, JX, Jei,Y) + R(e;, JX, e;,Y))
i=1
2n

1 n
~ 9 Z(R(Y7 Je;, X,e;) + R(Je;, X, Y, €;)) = —= ZR (X,Y, Je;, e)
i=1

:J—_liR(X,Y,ﬁi,u@ \/_Zh XYUHU’%)
i = \/—_trT(lo)M[ R(X,Y)]. (1.3.17)

From Theorem 1.2.11 and (1.2.13), on T M,

R=dU+T AT =h90h — h™'0h A h™'0h = 001log(h), (1.3.18)

where h is the matrix for 7" Here log(h) is defined by the power series
expansion

n+1 n

log(1 + ) Z (1.3.19)

n=1

(or the inverse of the exponential map exp : gl(n,C) — GL(n,C)). Take
care that log(h) here, which depends on the frame, is not a global function
on M. But 9dlog(h) is

From (1.3.18),

Ric,, = \/—158trT(1’0>M10g(h) = —v/—100log det(h). (1.3.20)

The proof of our proposition is completed. O



1.3. CURVATURES 21

Remark that in the last equality of (1.3.20), we use the matrix identity
that

trlog(A) = logdet(A) (1.3.21)
holds for any complex non-degenerate matrix A.
Corollary 1.3.5. The Ricci form Ric,, € QYY(M) is closed, that is
dRic,, = 0. (1.3.22)

Proof. The proposition follows from the facts that the exterior differential d
is local and

dod = 9°0 + 000 = —00* = 0. (1.3.23)
O

Recall that if X, Y € T, M such that | X| = |Y| =1 and g(X,Y) = 0, then
R(X,Y, X|Y) is the sectional curvature of the plane P spanned by X,Y.
As in the Riemannian geometry, we want to study the Kéhler manifolds
with constant curvature. Unfortunately, the space form of constant positive
curvature, S?", is not Kahler unless n = 1. So we restrict us to only study
the sectional curvature of the plane which is preserved by the almost complex
structure.

Definition 1.3.6. Let P be the plane in T, M invariant by J. Let X be a
unit vector in P. Then

K(P)=R(X,JX, X, JX) (1.3.24)
is called the holomorphic sectional curvature by P.

It is easy to see that the holomorphic sectional curvature by P does not
depend on the choice of X in P.
Set U = %(X —+/—1JX). Then

K(P)=—-R(U,U,U,U). (1.3.25)
Definition 1.3.7. If K(P) is a constant for all planes P in T, M invariant

by J and for all points © € M, then M is called a space of constant holo-
morphic sectional curvature, which could be simply denoted by CHSC.
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Theorem 1.3.8. The following identities are equivalent:
(1) a Kdihler manifold M is CHSC with constant c;
(2) for any A,B,C,D € TM @ C,

R(A, B,C, D) = 7 (9(A. D)g(B.C) — g(A. C)g(B, D)
+g(A, JD)g(B,JC) — g(A, JC)g(B, JD) +29(A, JB)g(D, JC)); (1.3.26)

(3) for any U,V,W, X € T M,

R(UV.W.X) = =5 (9(U.V)g(W.X) + g(U,X)g(W.V)) . (13.27)

Proof. (2) = (3) and (3) = (1) are obvious. We only need to prove
(1) = (2).
For A,B,C,D € TM ® C, let

1
RO(Aa Bach) = Z(Q(A7D)g(Bac) _g(A>O>g(B>D)
+g(A, JD)g(B, JC) — g(A, JC)g(B, JD) + 29(A, JB)g(D, JC)) (1.3.28)
It is easy to verify that
Ry(A,B,C,D) =—Ry(B,A,C,D)=—Ry(A,B,D,C),
Ro(A,B,C,D) = Ry(C, D, A, B),

( )

( )
Ro(A, B,C, D) + Ry(B,C, A, D) + Ry(C, A, B, D) =0,
Ro(A, B,C, D) = Ry(JA, JB,C, D) = Ry(A, B, JC, JD).

(1.3.29)

Recall that the curvature R also verifies (1.3.29). Since M is a CHSC with
constant c,

R(A,JA, JA A) = —cg(A, A)? = —cRy(A, JA, JA, A). (1.3.30)
Set T'= R — cRy. From (1.3.29),
T(A,JB,JC,D)+T(A,JD,JC,B)+T(A,JC,JD,B) (1.3.31)

is symmetric in A, B, C, D. Since it vanishes for A = B = C' = D by (1.3.30),
it must vanish identically.
Let A= D, B=C. We have

2T(A,JB,JB, A) + T(A, JA, JB, B) = 0. (1.3.32)
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From (1.3.29),

0=T(A,JA,JB,B) + T(JA,JB, A, B) + T(JB, A, JA, B)
=T(A,JA,JB,B) — T(A, B,B,A) — T(A, JB, JB, A). (1.3.33)

From (1.3.32) and (1.3.33),
3T(A,JB,JB,A)+T(A,B,B,A) =0. (1.3.34)
Replacing B by JB,
3I'(A,B,B,A)+T(A,JB,JB,A) = 0. (1.3.35)
Combining (1.3.34) and (1.3.35), we have
T(A,B,B,A) =0 (1.3.36)

for any A, B € TM ® C. Thus

1 1
0= éT(A,B +C,B+C,A) = §(T(A,B,C, A)+T(A C,B,A))
=T(A,B,C,A). (1.3.37)
By (1.3.37),

0=T(A+D,B,C,A+ D) =T(A,B,C,D)+T(D, B,C, A)
— T(A, B,C,D) — T(C, A, B,D). (1.3.38)

Replacing (A, B,C) by (C, A, B) in (1.3.38),
T(C,A,B,D)=T(B,C,A,D). (1.3.39)
So from (1.3.29),
1
T(A,B,C,D) = g(T(A,B,C’,D) +T(C,A,B,D)+T(B,C,A,D))=0
(1.3.40)
for any A, B,C,D € TM ® C. That means,
c
+g(A, JD)g(B, JC) — g(A, JC)g(B, JD) + 29(A, JB)g(D, JC)). (1.3.41)

The proof of our theorem is completed.
[



24 CHAPTER 1. KAHLER MANIFOLDS

Corollary 1.3.9. Let (M,w) is a Kdahler manifold, which is CHSC with
constant c. Then (M,w) is Kdhler-FEinstein with Finstein constant c¢(n+1)/2.

Proof. Let ey, - ,es, be alocally orthonormal basis of T'M such that e, ; =
Je; for i =1,--- ,n. By Theorem 1.3.8,

Ric(X,Y) = ‘n R(ei,X,ei,Y)+§:R(Jez,X, Jei,Y)
e Z (9(X,Y) — g(X,e)g(V, e2) + 3g(X, Jer)g (V. Jer))
i 2 : (9(X,Y) — g(X, Je)g(Y, Je;) + 39(X, e)g(Y, e:))
_ zn; %(g(x, Y)+9(X,e)g(Y, &) + g(X, Je;)g(Y, Je;))
) _ (”;1)69()(, Y). (1.3.42)

O

Corollary 1.3.10. Let (M, g) is a Kdhler manifold, which is CHSC with
constant ¢. If ¢ > 0 (or ¢ < 0), the sectional curvature of (M,g) is non-
negative (or non-positive).

Proof. By Theorem 1.3.8,

R(A,B,A,B) = Z (JA2|BJ2 = g(A, B)® + 3g(A, JB)?) . (1.3.43)
]
Locally, set W = wia% and X = 2/:2. Let w = (wy, -+ ,w,) and

2= (21, ,an). Then by (1.2.19), (1.3.1) and (1.3.18),
RWU,V,W,X) = —R(U,V,X,W) = (hddlog(h)(V, U)uwt, ).  (1.3.44)

In local coordinates, from (1.3.18) and (1.3.44),

e (D00 0N Phu . Oha O
ikt 0z 62/ 0z, 0z N 02;0%; 0z; 0%,
Fhy 4 Ohs; Ohi

- 02,07 0z, 0% .

(1.3.45)
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Example 1.3.11 (Projective space). Recall that in Example 1.1.12, we con-
struct the Fubini-Study metric ¢® on CP". Now we rescale the metric by

2
ge=-g"%, ¢>0. (1.3.46)
c
_ Consider the unitary group U(n 4 1) on C*** (for any A € U(n + 1),
AA" = 1d). Since A € U(n + 1) is linear, it induces an action on CP" by

A([z]) = [A(2)], [#] € CP™. (1.3.47)

By definition, U(n+ 1) action preserves the Hermitian metric on C"™!. From
(1.1.33), we see that g. is U(n+1)-invariant. On the other hand, the U(n+1)-
action on CP" is holomorphic and transversal, i.e., for any z,y € CP", there
exists A € U(n + 1) such that y = Az. So the local structure of any two
points on CP" is the same up to the holomorphic isometry. Thus, in order to
calculate the holomorphic sectional curvature, we only need to work on one
point.
At the point # = 0, we calculate from (1.1.33) that

2 - 09eii  0Gcis
5= 0y, g7 =50y, ot =2 =0 1.3.48
gc,zg c J gc 2 J aek aek ( )
Moreover,
82 c.i 2 84
Jeig | 2 T 1og(14|0]?)
89,@891 =0 cc%’ﬁ@@&;ﬁ&l 0—0
20 (030 — 6,;10,) (1 4 10]%) — 20,(1 + |0|)61 — O,
¢ 9, |y, (1+]012)?

2

By (1.3.45), we have

C

Rijki = 9

(9ci79eki + Ge jie.il)- (1.3.50)

From Theorem 1.3.8, we see that (CP", g..) is CHSC with constant ¢ for ¢ > 0.
In particular, (CP", g*'¥) is CHSC with constant 2. By Corollary 1.3.9, CP"
is a Kéahler-Einstein manifold with Einstein constant n + 1.

Example 1.3.12. Let M = C" with trivial metric. Then the holomorphic
sectional curvature vanishes.
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Example 1.3.13 (Complex hyperbolic space). Let M = B* = {z € C":
|z] < 1}. Let

(1 —12*)05 + Ziz;
(1—1z[?)?

log(1 — |2]*) = (1.3.51)

95~ " 9zi0w

It is easy to see that the matrix (g;;) is positive definite. Thus it induces a
metric on B™. Then by (1.1.22),

(1 — |Z|2)5” + Zi

ZJ g0 A i
(1= 272 dz' NdZ'. (1.3.52)

w=—v—100log(1 — |z]*) = vV/—1-

is a Kahler form of B".
Let

2
ge=—-9g, ¢<0 (1.3.53)
c

where g is the metric in (1.3.51). Then following the same process as in the
study of projective space, we could calculate that

c
R = i(gc,ijgc,kl_ + Ge.jkGeil)- (1.3.54)
From Theorem 1.3.8, we see that (CP", ¢.) is a space of constant holomorphic
section curvature ¢ for ¢ < 0.

Theorem 1.3.14. (Uniformization Theorem) For a complete Kdhler mani-
Jold M of constant holomorphic sectional curvature c, its universal covering
M is holomorphically isometric to one of the above examples.

Proof. After rescaling, we only need to handle three cases: ¢ = —1,0, 1.

We prove ¢ < 0 first. Let (M., g.) be the Kéhler manifold of constant
holomorphic sectional curvature c in the above examples. Consider the ex-
ponential maps exp, : ToM. — M, and exp, : T, M — M respectively. By
Corollary 1.3.10, the sectional curvatures of M, and M are non-positive. By
Cartan-Hadamard theorem, the exponential maps are diffeomorphisms. Here
we use the complete property.

Identify both Ty M, and T, M with R*" and define the map ¢ := exp, (exp,) .
Since VJ = 0, we see that ¢ is holomorphic. We only need to prove that ¢ is
an isometry. By Cartan-Hadamard Theorem, for any p € M. and X € T,M.,
there exist v,w € R*" such that expy(v) = p and dexpy(v)(w) = X. If

¢ = é(p), X = do(X), then exp,(v) = ¢ and dexp,(v)(w) = X. Set
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v(s,t) = expy(s(v + tw)). Let J be the corresponding Jacobi field. Then
J(1) = X. By Jacobian equation,

ViVsJ — R(%,J)7 = 0. (1.3.55)
Take an orthonormal basis ey, - -, eq, for ToM,, such that e; = /|| and
ényi = Je; for ¢ = 1,--- 'n. Parallel transport this basis along 7, then

Vsei(s) =0 and €;(0) = e;. Write J(s) = J'(s)e;(s), then (1.3.55) is
02 Ji(s)
0s?
By Theorem 1.3.8,

— 3PP (R(e, ej)et, ei)J (s) = 0. (1.3.56)

C

<R(€1, €j>617 6@) = Z (513 — 511'513' - 6i,n+1§j,n+1 + 25i,n+15j,n+1> . (1357)

So X is uniquely determined by v,w and c. Since X satisfies the same
equation with the same initial values, we have | X| = |X|. That means ¢ is
an isometry.

If ¢ > 0, by Corollary 1.3.10, the Ricci curvature is positive. By Myers’
Theorem, we know that M is compact. Let Uy C CP" be the open subset
defined in (1.1.26). Then by the same argument, we can show that ¢ is an
isometry from Uy onto its image. Since Uy is dense in CP" and M is compact,
we can extend ¢ to all of CP" so that ¢ remains an isometry.

The proof of our theorem is completed. O

Definition 1.3.15. Given two J-invariant planes P and P’ in T, M, we define
the holomorphic bisectional curvature H (P, P') by

H(P,P)=R(X,JX,Y,JY), (1.3.58)

where X is a unit vector in P and Y a unit vector in P’. It is a simple matter
to verify that R(X, JX,JY,Y) depends only on P and P'.

Set

1
U= —
V2

(X —vV-1JX), V=—(Y —+V-1JY). (1.3.59)

Sl -

Then

H(P,P)=R(X,JX,Y,JY)=R(UU,V,V)
= R(X,Y,X,Y)+ R(X,JY,X,JY). (1.3.60)
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If M is CHSC with constant ¢, by Theorem 1.3.8 and (1.3.60),

H(P,P)=R(X,Y,X,Y)+ R(X,JY,X,JY)
= % (1+9(X,Y)* +9(X,JY)?). (1.3.61)

It follows that, for CHSC with constant c,, the holomorphic bisectional cur-
vatures H (P, P’") lie between ¢/2 and ¢,

e Py < el (1.3.62)
where the value ¢/2 is attained when P is perpendicular to P’ and the value
c is attained when P = P'.

We state an amazing theorem related to the bisectional curvature without
proof to finish this introductory chapter.

A map f: M — N between two complex manifolds is called biholomor-
phic if f is a holomorphic homeomorphism.

Theorem 1.3.16 (Siu-Yau,Mori ’80). Ewvery compact Kdhler manifold of
positive bisectional curvature is biholomorphic to the complex projective space.

Remark 1.3.17. Like the sphere in Riemannian geometry, the complex pro-
jective space also has some rigidity properties. As consequences of the famous
Calabi-Yau theorem, in 1977, Yau prove that

o If M is compact and Kahler, M is homeomorphic to CP", then M is
biholomorphic CP";

e (solution of Severi conjecture)If M is a compact complex surface, M is
homotopy equivalent to CP?, then M is biholomorphic to CP?.

In 1990, Libgober and Wood prove that If M is compact and Kahler, dimec M <
6, M is homotopy equivalent to CP", then M is biholomorphic CP".

In a note of Tosatti in 2018, if there exists a compact complex manifold
M diffeomorphic to S then there exists a compact complex manifold M
diffeomorphic to CP* but not biholomorphic to it.



